The recommendations in this document are best practices and are to serve as guidelines only. These are not regulation requirements. The information is based on the National EMS Pilots Association 2008 Hospital Helipads Presentation prepared by Rex Alexander. It is intended for education and information only and should not be considered or used in substitution of actual FAA, DOT or other regulations.

**President**
Susan Crum  
Cox Air Care  
417-269-4040

**Vice President**
Ruby Mehrer  
LifeFlight Eagle  
816-506-2792

**Treasurer**
DJ Satterfield  
Mercy LifeLine  
417-820-6679

**Secretary**
Christy Dressler  
Children’s Mercy Hospital  
816-802-1112

Contact MOAAMS for questions or more resources:

---

As you and your facility consider hospital construction projects, whether additions or renovations to existing facilities, or changes to helipads in consideration of Missouri's TCD designations, please examine the recommendations in this guide. As with all air-medical operations, safety is the highest priority. Ensuring hospitals have safe facilities for helicopter operations is critically important to our end-goal of providing safe, rapid transport for patients in need. This guide provides helpful information about minimum helipad sizes, safety zones, helipad maintenance, landscaping, fencing, hazard marking and more.

We strongly encourage you to include your local air-medical program in the earliest planning stages possible as you consider any helipad changes or hospital construction projects. Collaborating on helipad and construction projects early in the process can save time, money and frustration.
Helipad Location
- Aircraft need two unobstructed flight paths in/out of a helipad, whether on the rooftop or ground. This means there can be no obstacles more than 10 feet tall within 80 feet of the edge of the helipad in two directions.
- Keep the safety area around the helipad free of obstacles approximately twice the area of the helipad when possible.
- Ground helipads should be placed close enough to the emergency department to allow quick access, but not too close to hospital structures. Consult your local air program early in the planning stages before any helipad construction.
- Follow regulations: FAA, DOT, OSHA, State & Local Zoning etc.
- Helipads should have a red capital letter H centered on the helipad, oriented in the preferred takeoff and landing direction.
- When applying paint on a new helipad, make sure a non-slip surface is prepared and that silica sand is added to the paint.
- When reapplying paint, always add silica sand to the paint to maintain the helipad’s non-slip integrity.
- The addition of reflective glass beads to paint helps to identify areas more clearly at night.
- DO NOT use rock salt to melt ice on helipads; it damages helicopters. Use products containing urea.

Helipad Size
- Helipads should be no less than 40 feet by 40 feet, and surrounded by a safety zone no less than 82 ft. x 82 ft.
- Ground helipads should be made of Portland cement concrete, at least 6 inches thick. Helicopters can sink into asphalt on a hot day.
- Drainage should be sloped away from access points for patient loading etc.

Ensure Non-Slip Surface
- Helipads should have a red capital letter H centered on the helipad, oriented in the preferred takeoff and landing direction.
- When applying paint on a new helipad, make sure a non-slip surface is prepared and that silica sand is added to the paint.
- When reapplying paint, always add silica sand to the paint to maintain the helipad’s non-slip integrity.
- The addition of reflective glass beads to paint helps to identify areas more clearly at night.
- DO NOT use rock salt to melt ice on helipads; it damages helicopters. Use products containing urea.

Helipad Lighting
- Utilize flush lights to define the perimeter, one at each corner, and additional lights uniformly spaced at a maximum interval of 25 feet between lights. Low wattage amber LED lights are recommended.
- Never have flood lights high above the helipad — they can blind pilots. Flood lights in the area should be aimed down.

Safety and Communication
- Train designated personnel to provide security (air ambulance programs provide this training free of charge).
- Remove snow and ice prior to helicopter arrival.
- DO NOT use rock salt to melt ice on helipads; it damages helicopters. Use products containing urea.
- Block all vehicle and pedestrian traffic near the helipad during landing and takeoff.
- Stay away from the tail rotor area at all times; approach only in the pilot’s line of sight and follow all crew member instructions.
- Communicate with your air ambulance provider with questions, concerns or new information.

Windsocks
- A windsock should be visible from the helipad to reflect wind speed and direction. It should be 6-8 feet long and lighted (amber) for night. It should be at least 10-15 feet above ground, and located at least 100 feet from the helipad.

Mark Hazards
- Power lines in the vicinity of the helipad need to be marked with appropriate orange markers.
- Any structure 200 feet or above needs to be lighted with red obstruction lights.
- Cranes should have flags for daylight and be lighted at night; lower cranes at night if possible; always notify helicopter programs if you have cranes or construction near the hospital or helipad.

Please Don’t
- Please Don’t install a fence as a perimeter for a helicopter landing area unless it is at least 41 feet from the center of the helipad. If you do build a fence, it should be short. Consult your local air program about materials and fence height.
- Please Don’t plant trees or shrubs near the helipad — they grow into obstructions.
- Please Don’t use small decorative landscaping bark, wood chips, stones etc., near the helipad. Rotor wash can cause them to become dangerous projectiles.
- Please Don’t locate a helipad within 50 feet of anything flammable.
- Please Don’t put an MRI unit (or any strong magnet) near the helipad, it can affect the helicopter’s instrumentation.
- Please Don’t allow trash or construction materials to be affected by our rotor wash (75 to 100 mph winds are common).